INSTALL BIODIVERSE ROOFS

OBJECTIVE

Water retention, increase energy efficiency.

DESCRIPTION

By placing logs, sand or low-fertility substrates on top of the roof covering, integral parts of the structures are created for ventilation and recovery of rain infiltration. The intention is to recreate habitats that would otherwise be lost to the new development. Designed to be relatively self-sufficient, they are not designed or constructed with the intention of being available for pedestrians, but instead to create a natural habitat to support a variety of plants, birds, animals and invertebrates.

EXPECTED RESULTS

Flash flood prevention, active energy using, service reduction, additional robustness of the roof, air quality improving.

RESULT INDICATORS

Area of roof covering [m²]

INVOLVED ACTORS

Local planning authorities, builder, buyer.

EXPECTED TIMELINE FOR ACTION

• Short term (1-4 years)

BEST PRACTICES

- St. Leonhards on Sea UK
- London UK
- Norðragøta Denmark

CRITICALITIES

Costs, sensitivity of adjacent sites of special scientific interest and the supply of water.

SCOPE OF THE ACTION

- Adaptation
- Mitigation

TYPE OF PROPOSED ACTIONS

• Green

SECTOR OF ACTION

- Biodiversity / Conservation of ecosystems
- Public health
- Urban settlement

CLIMATE IMPACTS

- Change or loss of biodiversity
- Drought
- Extreme precipitation
- Extreme temperatures
- Other

IMPLEMENTATION SCALE

Municipality

SOURCE

 $http://www.future-cities.eu/fileadmin/user_upload/pdf/FC_AdaptationCompass_Supplement_web.pdf \\ http://www.abg-geosynthetics.com/case-studies/blue-roof-green-roof-projects$

